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Abstract
We propose a pitch stylization technique in the presence of
pitch halving and doubling errors. The technique uses an op-
timization criterion based on a minimum mean absolute error
to make the stylization robust to such pitch estimation errors,
particularly under noisy conditions. We obtain segments for the
stylization automatically using dynamic programming. Experi-
ments are performed at the frame level and the syllable level. At
the frame level, the closeness of stylized pitch is analyzed with
the ground truth pitch, which is obtained using a laryngograph
signal, considering root mean square error (RMSE) measure. At
the syllable level, the effectiveness of perceptual relevant em-
beddings in the stylized pitch is analyzed by estimating syllabic
tones and comparing those with manual tone markings using
the Levenshtein distance measure. The proposed approach per-
forms better than a minimum mean squared error criterion based
pitch stylization scheme at the frame level and a knowledge-
based tone estimation scheme at the syllable level under clean
and 20dB, 10dB and 0dB SNR conditions with five noises and
four pitch estimation techniques. Among all the combinations
of SNR, noise and pitch estimation techniques, the highest ab-
solute RMSE and mean distance improvements are found to be
6.49Hz and 0.23, respectively.
Index Terms: Pitch stylization, minimum MAE criterion, dy-
namic programming based segmentation, noise robustness

1. Introduction
Pitch stylization is a process of representing the pitch contour
compactly with the least number of segments [1]. The stylized
pitch contour has been shown to be useful in several applica-
tions including emotion recognition [2, 3], computer assisted
language learning (CALL) [4, 5], speech synthesis [3, 6], phrase
boundary detection [7], disfluency identification, speaker veri-
fication [8] and intonation modeling [9, 10]. Origilia et al. have
emphasized that the stylized pitch should be robust to unim-
portant variations, otherwise those variations would introduce
noise in the applications [11].

To remove these unwanted variations, Rossi et al. have ap-
plied a low-pass filter on the pitch contour during the pitch styl-
ization process [12]. Instead, Demenko et al. have performed
pitch stylization directly on the pitch contour considering the
segments obtained with manual markings [5]. However, man-
ual syllable segmentation is cumbersome. To avoid manual in-
tervention, Uwe et al. have performed pitch stylization by ob-
taining segments automatically and applying a line-fit on each
segment separately [13]. But, in this two-step approach, the er-
rors in the segmentation affects the stylization process. On the
other hand, Ghosh et al. have proposed dynamic programming
(DP) based approach to obtain the segments and stylized pitch
jointly [14]. Origlia et al. have shown that the DP based ap-
proach is not statistically different from the other approaches
that use syllable segments in a subjective manner [15]. Most
of these works consider the stylization process by minimizing
mean squared error (MSE) between a pitch contour and its styl-

ized contour [13, 5, 16, 14].
However, an estimated pitch contour often suffers from

halving and doubling errors. For noisy speech, these errors are
more than those under clean conditions [17]. Though these er-
rors occur naturally under creaky voice conditions [18], such
phenomena are less often, hence not considered in this work.
Figure 1 illustrates the errors (halving/doubling) and their effect
on pitch stylization with an exemplary voiced segment. It shows
the ground truth pitch (green colored) as well as estimated pitch
(black colored) obtained using sub-harmonic to harmonic ratio
(SHR) [19] under clean (Figure 1a) and additive white Gaus-
sian noise at 0dB SNR condition (Figure 1b). The figure shows
that the errors in the estimated pitch (blue rectangular boxes)
are more under 0dB SNR compared to those in clean condition.
Thus, the stylization approach has to be robust in the presence
of such errors. However, from the figure, the stylized pitch (red
coloured) obtained using typical MSE based criterion on the es-
timated pitch is not close to the ground truth pitch (higher MSE)
under 0dB SNR compared to that under clean condition. This
suggests that the MSE based stylization could be erroneous in
pitch halving and doubling errors as it is sensitive to outliers
caused by the errors.

In the literature, it has been shown that the outliers can be
handled effectively using a minimization criterion with mean
absolute error (MAE) than that with MSE [20]. However, it
is challenging to formulate MAE based criterion for the pitch
stylization since it requires joint optimization to obtain segment
boundaries and perform stylization on each of these segments.
In this work, we address this challenge by proposing a DP ap-
proach with the MAE cost function. We show that this formula-
tion is robust under four pitch estimation techniques, five noise
types and three SNR conditions (20dB, 10dB and 0dB) at the
frame level closeness and the syllable level tone embeddings
considering three corpora, namely, KEELE [21], PaulBaghsaw
[22] and British English (BE) training corpus [23]. We compare
the stylized pitch closeness with the ground truth pitch extracted
from a laryngograph signal by computing root mean squared er-
ror (RMSE) in a voiced segment averaged across all segments
in a corpus. We measure the tone embeddings’ quality by com-
puting Levenshtein distance between estimated tones from the
stylized pitch and manual tone markings in an utterance aver-
aged across all utterances in a corpus. The averaged RMSE and
distance are less with the proposed pitch stylization than that
obtained respectively from the MSE-based baseline pitch styl-
ization scheme and knowledge-based baseline tone estimation
scheme under all the noise, SNR and pitch estimation technique
combinations.

2. Database
We use KEELE [21] and PaulBaghsaw (PB) [22] corpora for all
experiments at the frame level in this work. KEELE database
consists of utterances from five male, five female and five chil-
dren speakers. PB database consists of 50 sentences spoken
by one male and one female speaker. In the experiments, we
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Figure 1: Illustration shows the motivation for MAE based cri-
terion, where the estimated pitch is obtained using SHR method
under a) clean condition and b) additive white Gaussian noise
at 0dB SNR condition c) pitch estimation error patterns using

the distribution of log2
( Estimated pitch

Ground truth pitch

)
.

consider only the sentences of all male and female subjects
from corpora. In both the corpora, each spoken utterance has
been recorded simultaneously with a laryngograph signal used
to compute the reference pitch and considered it as the ground
truth. Further, for the experiments in syllable level, the speech
data is considered from a spoken English training material used
for teaching BE, referred to as BE training corpus [23]. The
speech recordings selected for our experiments contain all the
utterances of intonation phrases belonging to intonation lessons.
The entire speech recording is manually segmented into individ-
ual speech files belonging to every utterance and obtained tone
sequence containing four tones – rise, fall, low and high for
each utterance [24]. The entire speech data contains a total of
233 utterances and has been spoken by one male and one female
native BE speaker. Also, in the experiments, we use five noises:
babble, f16, hfc, volvo and white from NOISEX-92 database
[25].

3. Proposed approach
3.1. Preliminaries

Let {xn}Nn=1 be a pitch contour representing a set of N dis-
crete values where n is an index variable. The problem of
pitch stylization is to approximate the {xn}Nn=1 with K piece-
wise polynomials to obtain a stylized pitch contour {x̂n}Nn=1.
Let x̂n in the k-th segment having begin and end indices
λ1(k) and λ2(k) is represented with P -th order polynomial as
P∑
p=0

αp(k)n
p, where αp(k), 0 ≤ p ≤ P are the polynomial co-

efficients. Further, in order to ensure the continuity across the
segment boundaries, it is assumed that λ1(k + 1) = λ2(k),
1 ≤ k ≤ N − 1, λ1(1) = 1 and λ2(K) = N . In ad-
dition, we assume that the pitch values are realizations of the
random variables X at index n, denoted by Xn = x̂n + ηn,
where ηn denotes the noise, which is independent identically
distributed (i.i.d.) random variable. In the existing work [14],
ηn has been assumed as white Gaussian noise with mean 0 and
variance 1. Under this assumption, it is trivial to show that the
maximum likelihood (ML) solution of the x̂n can be obtained

as argmin
{x̂n}

N∑
n=1

(xn − x̂n)2. Replacing x̂n in the k- th segment

with
P∑
p=0

αp(k)n
p, the optimization problem becomes

argmin
{λ1},{λ2},{αp}

K∑
k=1

λ2(k)∑
n=λ1(k)

(
xn −

P∑
p=0

αp(k)n
p

)2

(1)

The parameters {λ1}, {λ2} and {αp} are solved using DP [14].
In this work, we replace MSE with MAE criterion.

3.2. Motivation for MAE criterion
In order to examine the need for MAE criterion, we analyze the
halving and doubling errors in pitch estimation using SHR in
the KEELE corpus under additive white Gaussian noise condi-
tions (Figure 1c). The figure shows the distribution of logarithm
of the ratio (LR) between the estimated pitch and the ground-

truth pitch
(

LR = log2
( Estimated pitch

Ground truth pitch

))
under clean as

well as 20dB, 10dB and 0dB SNR conditions. Zero, 1, -1 values
of LR indicate 0, halving and doubling errors in the estimated
pitch. From the figure, it is observed that, apart from LR=0,
there are significant peaks at LR=-1, 1, 1.585 under clean and
all three SNR conditions. These peaks cause the tail of the dis-
tribution to be heavy, indicating that the error distribution may
not be Gaussian, which corresponds to the MSE criterion based
pitch stylization. Instead, we assume the error distribution to be
Laplacian.

3.3. MAE based approximation
It is trivial to show that the ML solution of x̂n for minimizing

MAE is obtained as argmin
{x̂n}

N∑
n=1

|xn−x̂n|, when ηn is assumed

to be an i.i.d. Laplacian noise with location and scale parame-
ters as zero and one respectively. Now, for k-th segment, replac-

ing x̂n with
P∑
p=0

αp(k)n
p, the optimization problem becomes:

argmin
{λ1},{λ2},{αp}

K∑
k=1

λ2(k)∑
n=λ1(k)

∣∣∣∣∣xn −
P∑
p=0

αp(k)n
p

∣∣∣∣∣ (2)

For this equation, first, we derive the steps to find optimal pa-
rameters for K = 1 and analyse its effectiveness in the pitch
stylization with respect to MSE based criterion with K = 1 in
(1). Later, we derive the steps to find optimal parameters for
any value of K.

When K = 1, λ1(K) = s = 1 and λ2(K) = r = N .

Considering these, (2) becomes argmin
{αp}

r∑
n=s

|xn −
P∑
p=0

αpn
p|.

Further, it can be represented in matrix-vector form as follows:

α̂(s, r) = argmin
α
|Aα− x|; E(s, r) = min

α
|Aα− x| where

A =


s0 . . . sP

(s+ 1)0 . . . (s+ 1)P

...
. . .

...
r0 . . . rP

 , α =

α0α1
...
αP

 , x =

 xsxs+1

...
xr


(3)

Solving for α using (3) is identical to solving the α from the

following: argmin
α,θ

N∑
n=1

θn subject toAα−x ≤ θ andAα−x ≥

−θ, where θ = [θ1, θ2, . . . , θN ]T . This can further be written
as

φ̂ = argmin
φ

fTφ subject to Dφ− y ≤ 0 (4)

where D =
[
A −I
−A −I

]
, y =

[
xT ,−xT

]T
, φ =

[
αT , θT

]T
and f = [0, 1], where IN×N is an identity matrix and 0 and
1 are the vectors of length P + 1 and N containing zeros and
ones respectively. We propose to solve (4) for φ using linear
programming approach, from which α is obtained.

The dotted magenta color line in Figure 1b shows the styl-
ized pitch obtained using (2) with K=1 for the exemplary pitch
segment shown in Figure 1. From the figure, it is observed that
the MAE based stylized pitch is closer to the ground truth pitch
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compared to the MSE based stylized pitch. Further, the root
mean squared error (RMSE) between the stylized and ground
truth pitch is found to be lower when (2) is used compared to
that when (1) is used for stylization. This indicates that the styl-
ized pitch obtained with MAE based criterion is more robust
to the doubling and halving errors compared to those estimated
with the MSE based criterion.

3.4. MAE based piecewise approximation
For any value of K ≥ 1, it is required to find the best poly-
nomial fit and the boundary points for each segment. Ghosh et
al. [14] proposed an approach to find the best polynomial and
boundary points using a DP based approach. Their approach
works on the principle of locally best polynomial fit within the
k-th segment to achieve a globally best solution. Following
their work, we perform pitch stylization considering MAE in
(2) as follows:

1) Local best solution: For given local data points
{xn}λ2(k)

n=λ1(k)
of the k-th segment, the best polynomial

approximation is obtained subject to the constraint of
P∑
p=0

αp(k)λ1(k)
p =

P∑
p=0

αp(k − 1)λ1(k)
p. In a matrix-

vector form, this constraint can be represented as hφ =

b (α(k − 1), λ1(k)), where b (α(k − 1), λ1(k)) =
P∑
p=0

αp(k−

1)λ1(k)
p, h = [λ1(k)

0, λ1(k)
1, . . . , λ1(k)

P , 0] and 0 is an all
zero vector of length λ2(k)− λ1(k) + 1. In order to obtain the
polynomial under this constraint based on MAE, we propose to
solve (4) by including the constraint hφ = b (α(k − 1), λ1(k))
to the existing set of constraints. This also involves computing
A and x considering s = λ1(k) and r = λ2(k) and taking
length of 1 in f as λ2(k) − λ1(k) + 1. The vector containing
the optimal polynomial coefficients and respective MAE are re-
ferred to as α̂ (λ1(k), λ2(k), b) and E (λ1(k), λ2(k), b) respec-
tively.

2) Global best solution: Considering the local best solu-
tion α̂ (λ1(k), λ2(k), b) and E (λ1(k), λ2(k), b), we obtain the
optimal values λ∗1(k), λ∗2(k), α̂∗(k) ∀1 ≤ k ≤ K using DP as
described in Algorithm 1.

4. Experiments and results
4.1. Experimental set-up
For the experiments, we add noise to each speech signal at
SNRs of 20dB, 10dB and 0dB. We obtain stylized pitch con-
sidering the pitch estimated under clean and all three SNR con-
ditions using four pitch estimation techniques, namely, SHR,
SWIPE [26], PEFAC [27] and YIN [28]. To determine the value
ofK for each voiced segment, we follow an approach similar to
that proposed by Wang et al. [16], where a Wavelet decomposi-
tion of the pitch contour is performed using Daubechies wavelet
(Db10), and the number of extrema in level 3 of the decompo-
sition is used as K − 1. The voiced segments are obtained us-
ing ground truth pitch and used in experiments under all noise
and SNR conditions. We analyze the proposed approach per-
formance in two folds: 1) frame level stylized pitch values’ ac-
curacy, and 2) the effectiveness of stylized pitch in preserving
perceptually relevant information at the syllable level, i.e., syl-
labic tones’ accuracy.

4.1.1. Set-up for frame level:
We compute RMSE between the ground truth pitch and stylized
pitch in each voiced segment and consider its mean across all
voiced segments in each corpus as the objective measure, re-

Algorithm 1 MAE based piece-wise polynomial. Input: K, P ,
{xn}Nn=1 and output: λ∗1(k), λ∗2(k), α̂∗(k) ∀1 ≤ k ≤ K

Initialization: Compute e1(r) = E(1, r) and γ1(r) =
α̂(1, r) using (3); b1(r) = b(γ1(r), r); ξ1(r) = 1 ∀ P +1 ≤
r ≤ N
Forward-pass:
for 2 ≤ k ≤ K & kP + 1 ≤ r ≤ N do

Compute bk(r) = b(γk−1(r), r)
Compute E(s, r, bk(r)) using (4) with additional constraint

of hφ = bk(r) ∀ 1 ≤ s ≤ r − P
ek(r) = min

1≤s≤r−P
{ek−1(r) + E(s, r, bk(r))}

ξk(r) = argmin
1≤s≤r−P

{ek−1(r) + E(s, r, bk(r))}, γk(r) =

α̂ (ξk(r), r, bk(r))
end for
Back-track:
λ∗2(K) = N ; λ∗1(K) = ξK(N)
for k from K to 2 do
s = λ∗1(k), r = λ∗2(k), α̂

∗(k) = α̂(s, r, bk(s)), λ
∗
2(k −

1) = s, λ∗1(k − 1) = ξk−1(s)
end for
α̂∗(1) = α̂ (λ∗1(1), λ

∗
2(1))

ferred to as mean RMSE. We consider the work proposed by
Ghosh et al. [14], which MSE based criterion, as the baseline.
For this experiment, we consider KEELE and PB corpora.

4.1.2. Set-up for syllable level:
We compute Levenshtein distance between manual (the ground
truth) tone sequence and predicted tone sequence from the styl-
ized pitch in each utterance and consider its mean across all the
utterances in BE training corpus as the objective measure, re-
ferred to as mean distance. We follow the work proposed by
Mertens to predict the tone sequence from the stylized pitch
obtained in the proposed approach [29]. We consider tone se-
quence estimated with the Prosogram tool [30] from the esti-
mated pitch as the baseline. In both the tone sequence estima-
tion, we use the Glissando threshold as 16

T
, where T is the time

duration of the segment.

Table 1: Averaged improvements (in Hz) across all five noise
types in mean RMSE for both the corpora using polynomial or-
der P = 1 and P = 2 under clean and all three SNRs for all
four pitch estimation techniques.

P = 1 P = 2
Clean 20dB 10dB 0dB Clean 20dB 10dB 0dB

KEELE
SHR 0.42 0.60 1.78 4.81 0.25 0.33 1.30 4.18

SWIPE 0.17 0.39 1.07 3.25 0.46 0.48 0.95 2.78
PEFAC 1.70 1.52 1.97 2.14 1.16 1.23 1.44 1.65

YIN 1.11 0.83 2.38 3.72 0.72 0.78 1.96 2.62
Avg 0.82 0.84 1.80 3.48 0.65 0.70 1.41 2.81

PB
SHR 1.14 1.31 2.71 6.49 1.11 1.28 2.43 4.93

SWIPE 0.38 0.52 1.19 3.08 0.18 0.27 0.58 1.78
PEFAC 1.28 1.09 1.13 1.73 0.61 0.61 0.86 1.33

YIN 0.65 0.66 1.24 3.65 0.72 0.74 1.13 2.67
Avg 0.86 0.90 1.57 3.74 0.66 0.73 1.25 2.68

4.2. Results and discussions
4.2.1. Frame level
Table 1 shows the improvement with the proposed MAE crite-
rion in mean RMSE over the baseline MSE criterion for both the
corpora averaged across all five noise types under clean and all
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three SNR conditions for P = 1 and P = 2 considering all four
pitch estimation techniques. From the table, it is observed that
all the entries in the table are positive. This indicates that the
pitch stylization errors are reduced with the proposed method
compared to the baseline method. When we average the im-
provements across all five noise types and all four pitch estima-
tion techniques (indicated in the blue color), it is observed that
the averaged improvements monotonically increase from clean
to 0dB SNR in both the corpora for both P=1 and P=2. Even
the monotonic increment in the improvements is consistently
observed in all four pitch estimation techniques as well. These
together indicate that, on average, the proposed MAE based
pitch stylization performs better than the MSE based baseline
with a larger margin at lower SNRs.

4.2.2. Syllable level
Table 2 shows the averaged mean distances across all five noise
types under clean and all three SNR conditions for each pitch
estimation method. The table shows that the averaged mean
distance obtained in four pitch estimation methods and their av-
erage are lower than that obtained using the baseline Prosogram
tool under clear and all three SNR conditions. This indicates
the benefit of the proposed pitch stylization in preserving per-
ceptual relevant information in terms of the tones. Further, from
the table, it is observed that the difference in mean distances be-
tween the proposed approach and Prosogram is the least under
clean condition and the highest in 0dB SNR condition under all
five noise types. This suggests that the proposed stylization ro-
bust to the pitch estimation inaccuracies caused by the noise in
the tone estimation.

Table 2: Mean distances and averaged mean distances across
all five noise types for BE training corpus considering P =
1 under clean and all three SNRs for all four pitch estimation
techniques.

SHR SWIPE PEFAC YIN Avg Prosogram
Clean 0.62 0.60 0.66 0.58 0.61 0.83
20dB 0.62 0.62 0.66 0.58 0.62 0.83
10dB 0.63 0.63 0.67 0.60 0.63 0.85
0dB 0.66 0.66 0.69 0.64 0.67 0.90
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Figure 2: (a) SNR specific variations in the RMSE improve-
ments (in Hz) and (b) GPE-20 errors (%) for all five noise types
and all four pitch estimation techniques on KEELE corpora.

4.2.3. Analysis
Further, we analyze the improvements in each noise condition
with the proposed approach on KEELE corpora at clean and all
three SNRs for P = 1 using Figure 2a. To examine how these

improvements depend on the pitch estimation errors, we com-
pute gross pitch estimation (GPE)-20 error and plot the same for
each noise under clean and all three SNR conditions for all four
pitch estimation techniques in Figure 2b. The GPE-20 error is
computed as 100 × Nerr/Nv , where, Nerr is the total num-
ber of voiced frames, in which the estimated pitch values fall
outside ±20% of the ground-truth pitch value and Nv is the to-
tal number of voiced frames. In both the figures, the black color
line indicates averaged improvements and GPE-20 errors across
all noises. The figure shows that the averaged improvements in-
crease with an increase in the averaged GPE-20 errors. This is
also true in most noise and SNR combinations for all four pitch
estimation techniques. These together suggest that the proposed
method is robust to the typical pitch estimation errors.
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Figure 3: Examplary voiced segments illustrating the merits and
demerits of the proposed pitch stylization method. Pitch in these
examples are estimated using SHR.

We further investigate the merits and demerits of the pro-
posed approach using Figure 3 with two exemplary voiced seg-
ments taken from KEELE database. Figure 3a and 3b show the
stylized pitch contours corresponding to the voiced segments
for which the RMSE is higher and lower respectively with the
baseline compared to that with the proposed approach. From
Figure 3a, it is observed that the stylized pitch with the proposed
approach follows the trend in the ground truth pitch, although
there is pitch estimation error. However, the stylized pitch us-
ing the baseline completely misses the trend in the ground-truth
pitch. This could be because the baseline is more sensitive to
the sudden pitch transitions. On the other hand, the baseline
results in a lower RMSE in Figure 3b compared to that with
the proposed stylization, where both the stylized pitch contours
miss the trend in the ground truth pitch due to error in the pitch
estimation over a relatively longer duration. However, the styl-
ized pitch contour from the baseline follows the sudden transi-
tion that occurred at 23-rd frame at which the estimated pitch
value is correct, which, in turn, results in a lower RMSE. This
suggests that the proposed stylization could miss transitions, if
present, at a shorter duration in the ground truth pitch.

5. Conclusions
Pitch stylization is performed by fitting an optimal piece-wise
polynominal of order P . The entire pitch contour is divided into
K segments using DP by minimizing MAE between stylized
pitch and the estimated pitch. We found that the MAE based
pitch stylization is more robust to the typical pitch estimation
errors. Experiments with KEELE, PaulBaghsaw and BE train-
ing corpora reveal that the proposed approach performs better
than the MSE based baseline and Prosogram baseline for all five
noises under clean and 20dB, 10dB and 0dB SNR conditions
considering four pitch estimation techniques. Further investiga-
tions are required to develop a method that incorporates comple-
mentary information from the proposed and baseline strategies
for suppressing erroneous transitions. Future work also includes
exploiting the MAE based criterion on explicitly obtained syl-
lable boundaries.
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